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ideas. Learning to understand the world is in fat a kind of remembering whatone already knows. Later philosophers like William of Oam threw the worldof ideas in the dustbin ("entia non sunt multipliands praetor neessitated", or"entities should not be multiplied beyond neessity") in favor of the nominalistiview that our desriptions of the world should be as simple as possible. Thispriniple, often referred to as Oam's razor (to ut o� Plato's beard of ideas),has had a deisive inuene in the history of siene. In modern methodologyof siene this notion is studied under various guises: Oam's razor [15℄, theminimal desription length (MDL) priniple [6; 17℄, two-part-ode optimization[31℄, learning as data ompression [33℄ et. All these approahes are indebtedto the formulation of an algorithmi solution to the problem of indution bySolomono� [30℄, Chaitin [7℄ and Kolmogorov [32℄, whih is one of the greaterahievements of siene in the 20th entury.In its modern guise this researh often goes hand in hand with a omputation-alisti oneption of the human mind as a kind of general problem solver. Thisoneption an, via the inuene of Carnap, also be traed bak to the empiriistpsyhology of the mind of Loke and Hume [21; 19℄. Solomono�'s solution to theindution problem is assoiated with the onept of Kolmogorov omplexity asa measure of the amount of information in a binary objet. Roughly the Kol-mogorov omplexity of a binary string is the length of the shortest pre�x-freeprogram that omputes this objet on a universal Turing mahine. This insightallows us to formulate the notion of a universal distribution that assigns an a-priori probability to an objet that is inversely logarithmi in its Kolmogorovomplexity. Espeially Solomono�, who was the �rst to formulate the idea of auniversal distribution, seems to have been driven by an ambition to solve thegeneral problem of mathematial indution on one hand and formulate a generaltheory of optimal human learning based on evolution on the other: My generalonlusion was that Bayes' theorem was likely to be the key. That a person wasborn with a reasonably good builtin a priori probability distribution. The per-son would then make preditions and deisions based on this distribution. Thedistribution was then modi�ed by their life experiene. The initial "Builtin"distribution was obtained by organi evolution. There was a strong seletion infavor of organisms that made deisions on the basis of "good" a priori probabil-ity distributions. The organisms making poor deisions would tend to have fewerdesendants. [30℄ This researh program seems to be the driving fore behindthe work of researhers like Shmidhuber [28℄ and Hutter [20℄. For a disussionof ompressibility as a general ognitive priniple see [8℄.Oam's razor has been questioned throughout history with �ere opponents(e.g. [15℄) and strong defenders (e.g. [33℄). Until reently the view of learning asalgorithmi data ompression did not seem to have muh pratial value. Lotsof learning algorithms in fat perform some kind of data ompression, but thiswas not a guiding priniple of their design [24; 13℄. Two developments in the last�ve years have hanged this perspetive quite fundamentally : 1) a better un-derstanding of the mathematis behind ompression, spei�ally Kolmogorovsstruture funtion [31; 32℄ and 2) the appliation of existing implementations



of ompression algorithms to approximate the ideal (and unomputable) Kol-mogorov omplexity as pioneered by Cilibrasi and Vit�anyi [9; 10℄.1.1 A thermodynami interpretation of Solomono�'s programAt this moment we have not only a muh better understanding of the theoretialissues behind data ompression. It has also beome lear that MDL as a uni-versal indutive methodology has aws. Gr�unwald and Langford have identi�edonditions under whih MDL behaves suboptimal [17℄. Adriaans and Vit�anyishowed that, although an optimal ompression of a data set produes in a er-tain sense an optimal theory, this does not imply that inremental ompressionof data sets, suh as most learning algorithms perform, is a generally valid strat-egy [4℄. The quality of our prediitive models may vary inde�nitely with eahinremental ompression step we make. Beause of the unomputatibility of theoptimal ompression we an never be sure to have reahed a good theory in any�nite time. In a purely algorithmi universe MDL atually would not be a verygood strategy. The fat that bounded resoure data ompression 'works' in ouruniverse has to do with its spei� physial struture. Consequently there annot be a pure algorithmi explanation of the validity of MDL. The extremelyeÆient data ompression that the human mind is able to perform seems to bedriven by bias that are not purely mathematial. In this ontext the 'built-in'a priori distribution that was referred to in the itation of Solomono� aboveould be updated in our theoretial models along the following lines: "We areintelligent agents that have evolved via a proess of evolution in a universe thathas the following struture:1. It is spatio temporal.2. It is subjet to elementary physial laws. In partiular it obeys the laws ofthermodynamis. It has an irreversible arrow of time that is assoiated witha ontinuous inrease in entropy.3. It supports the spontaneous emergene of universal omputational proesses[34℄. Sine the apaity to store information presupposes the existene ofreversible proesses (bit-ips) and sine reursive funtions disard informa-tion, this implies that it ontains systems that an sustain thermodynaminon-equilibrium states during a ertain time.4. It supports various funtions for the distribution of information throughspae: light (vision), mehanial interation (touh, hearing) and hemialinteration (smell, taste). These information distribution funtions at as'lossy' homomorphisms that only onvey partial information. In general theinformation deays at least polynomially with the distane in spae.In the ontext of evolution we may expet our sensory organs and generalproblem solving apabilities to be optimized for these onditions. In partiularone would expet agents emerging in these onditions to have advaned apabili-ties to evaluate spatial variations in entropy. Sine systems inrease their entropyover time, plaes with low entropy are naturally 'interesting' and may reate life



sustaining onditions. Also the fat that suh agents ould emerge in an evolu-tionary proess presupposes the environment to be benign in the following sense:the lossy information distribution funtions onvey enough information to sur-vive. This implies that detetion of entropy variations that are preserved underlossy ompression (i.e. general detetion of density variations) is suÆient forsurvival.1This thermodynami variant of Solomono�'s program moves us away from amore radial interpretation of his work implying a omputationalisti view of theworld, i.e. the metaphysial theory that the world essentially is a omputationalproess and that the human mind is a universal omputer. The onnetion isas follows: the appliation of the universal distribution to a data set seems toimply that we regard this data set as the result of a omputational proess. Ifwe interpret the human mind as a general problem solving devie that is the re-sult of an evolutionary proess then it is natural to suppose that it is optimizedfor data sets that are produed by omputational proesses, i.e. it evolved in aworld that is itself omputational. Computationalisti ideas have been defendedby a variety of authors like Wolfram [34℄, Shmidhuber, Lloyd [23℄, Floridi andZuse: "The entire universe is being omputed on a omputer, possibly a ellularautomaton."2 It is lear that this form of omputationalism is a purely meta-physial position whih an not be veri�ed at best, but whih prima faie isat variane with plain observations we an make in everyday life: e.g. althoughthe laws of gravity an be desribed in terms of simple mathematial regulari-ties there is nothing that suggests that gravity is itself a omputational proess.Metaphysial omputationalism therefore should be rejeted as unsienti�. Fur-thermore, given the aws of MDL disussed above, it is diÆult to defend theidea that the human mind evolved as a purely algorithmi ompression basedproblem solver.The rejetion of omputationalism implies a view of omputational modelsof proesses in the world as phenomenologial : i.e. they desribe proesses inthe world without any presupposition about their ontologial status. An ex-planation of the fat that the world at di�erent levels of aggregation and overdi�erent phase transitions an be desribed by simple high level mathematialequations remains one of the great hallenges of siene. Assuming that the worldis essentially a omputational proess will not bring this issue any loser to asolution.1 This last ondition seems to rule out exatly those data sets that given the resultsof Adriaans and Vitanyi [4℄ ould bring a general ompression based bounded prob-lem solver in to trouble. It is a well known priniple in information theory that ifa set of messages has systemati density variations it does not have maximal en-tropy. An environment is benign if the opposite ondition also holds: If a data set isompressible it has density variations. This ondition rules out the maliious demonthat presents data sets that are apparently random, but in fat an be ompressedsubstantially, e.g. deimal expansions of the number �. Suh data sets indeed seemto be suÆiently rare in our universe suh that a failure to reognize them in generaldoes not reate life threatening risks. Of ourse they still do our in nature.2 Konrad Zuse, as he referred to this as "Rehnender Raum (Zuse 1967, 1982).



1.2 Meaningful informationThere is a onnetion with the notion of meaningful information. Formal de�ni-tions of information like those of Shannon and Kolmogorov do measure informa-tion in data sets but they do not apture the notion of meaningful information.This is immediately lear when we note that the most information rih radiotransmission we ould send is pure noise. Any station following this strategywould soon loose its audiene. Data sets with maximum entropy are not on-sidered to be interesting by human beings: suh sets are rih in information butthey ontain no meaningful information. On the other hand a transmission ofpure silene would also not be onsidered to be very informative. They ontainno information at all. Meaningful information seems to exist in the 'sweet spot'between order and haos.In this paper I assoiate meaningfulness with fatiity, but this is no doubtonly a rude approximation. In general siene, in the study of human ognitionand even in art we seem to have an interest in systems that have a omplex-ity between order and haos, between boredom and noise. The 'interestingness'of these data sets is related to ompressibility ([12℄, [14℄). The thermodynamiexplanation for this seems to be the fat that, in a universe in whih entropy nat-urally inreases over time, systems that maintain a low entropy over a period oftime are 'by de�nition' interesting. Compressibility is assoiated with struture,with self-organization and with the priniples of life itself.It is important to distinguish this question from the related ambition of re-searhers that are interested in formulating a theory of optimal learners basedon Kolmogorov omplexity. Shmidhuber even has formulated a theory of al-gorithmi aesthetis and low omplexity art along these lines [27℄. Reently heintrodued a notion of interestingness as the �rst derivative of subjetive om-pressibility [29℄. This theory deals with a subjetive notion of interestingness ata ertain time for a ertain agent. Fatiity on the other hand is an a prioriquality of data sets, i.e. produts of the human mind. As suh it leads to pre-ditions that an in priniple be veri�ed empirially given the present state oftehnology. Sine I am also interested in a theory of algorithmi esthetis I willpresent a ritial disussion of the ideas of Shmidhuber in a separate paragraphat the end of this paper.3In the ontext of this paper I am not so muh interested in the de�nition ofan optimal problem solver but in the question why the universe produes datasets from whih anything an be learned at all. Why does the universe at as aooperative teaher? Why do we live in a universe in whih MDL is a valuablemethodologial priniple? The reason for this shift in diretion is the insightthat the study of algorithmi strategies for problem solving, as suh, do not ex-plain the eÆieny with whih we solve problems. Theories about algorithmiallyoptimal problems solvers give an interesting framework for the transendentalanalysis of learning but in order to explain the eÆieny of learning an analysisof additional bias is neessary. This paper does a �rst step in this diretion by3 The ideas on a dialetis of fatiity and art were presented in my Paradiso letureat the beginning of 2007.



analyzing bias that stem from thermodynamis. This shift is not in onit withSolomono�'s researh program but more or less orthogonal to it. Surprisingly,from a philosophial point of view, this hange of diretion is assoiated with ashift from an empiriist tabula rasa position to a more Cartesian/Kantian viewin whih a learning agent shares bias with the world in whih it is embedded.This should be interpreted not so muh as innate ideas, but as the theory that anagent inherits distributions from the world from whih it originates. This is fullyompatible with the observation ited above of Solomono� that human beingsare: "born with a reasonably good builtin a priori probability distribution."

Fig. 1. Fatiity sores for mixing blak and white paint. For a deeper disussion seeparagraph 4. The fatiity of a data x is the produt (times 4) of the normalized entropyC(x)=Cmax(x) and the normalized randomness de�ieny (Cmax(x)�C(x))=Cmax(x).Con�guration 4 has the best balane between order and haos and thus would bethe most 'interesting' one. The sores have been alulated using JPEG, followed byRAR ompression. Maximal entropy Cmax(x) has been approximated by adding 400 %noise to the images. The standard entropy C(x) is approximated by the �le size afterompression. Note that the resolution of the amera inuenes the measurements. Theaddition of hard pixel noise reates a random image that the amera never ouldapture. This is the reason that none of the pitures reah the maximal fatiity of 1.



2 Learning and ThermodynamisHere is an experiment. Take a up of o�ee and pour some ream in it (SeeFigure 1). Take a piture of it with your digital amera. In the beginning theream will be just an uninteresting blob. Stir slowly and make pitures of variousstages that have nie patterns. Continue until the ream has dissolved and yourup has an even brown olor. Drink the o�ee, then look at the �le size of thedi�erent pitures.If your amera uses an adequate ompression algorithm you will �nd that the�le size has inreased up to a ertain point and then dereases. The ompressionalgorithm of your amera reets the omplexity of the data set until the momentthat the omplexity has reahed a global equilibrium and is beyond its resolution.In this experiment we have a system that evolves in time, the up of o�ee, and adata set of observations, the pitures. The rux of this experiment is that the sizeof the individual pitures somehow reets the 'interestingness' of the system. Inthe beginning there is a lot of order in the system. This is not very interesting.In the end there is an equilibrium that also has little ognitive appeal. Below Iwill propose a theory to make these ideas more preise.Let us rede�ne the problem of learning as a general problem of indution.Suppose we study some universe � that ontains a ertain system �. In priniple� ould be anything: the human brain, the living ell, a blak hole, the weather.For the moment we will suppose that � is an isolated physial system that existsin spae and time. The problem of indution now takes the following form: an wedevelop a desription of � that: 1) explains its struture 2) predits its behavior?Behind these issues there is still a deeper problem. Note that by denoting S asa system we have already made a hermeneuti jump. By onsidering � as asystem we have deided that it is interesting. The question is: an we give aformal desription of this notion of interestingness. This last question annot beanswered by means of an analysis of the formal omplexity of � alone. In orderto understand these questions we must look at the physial bakground andspei�ally at the theory of thermodynamis 4. The �rst law of thermodynamisdesribes the hange of internal energy U of a system in terms of the di�erenebetween the amount of heat Q absorbed by the system and the amount of workW done by the system: dU = �!d Q��!d W (1)The seond law of thermodynamis states that a hange of entropy of any systemis diretly related to a hange in the amount of heat absorbed by the system,and inversely related to the absolute temperature T . Moreover the entropy neverdereases in time: dS = �!d QT ; dSdt � 0: (2)An important notion for our researh is that of free energy :F � U � TS (3)4 For a disussion of the relation between physis and information see [5℄



The free energy is assoiated with the amount of energy in the system that isfree to do work. If a system is in a state of thermal equilibrium then the freeenergy is minimal and the entropy is maximal. In a gas the total entropy inequilibrium is given by: S = �Xi pi log pi (4)where pi are the individual probabilities of the veloities of the partiles. In thelimiting ase where all probabilities are equal pi = p = 1=w we get:S = lnw: (5)This is the formula that Boltzmann had engraved on his tombstone. It tells usthat in a state of maximal equilibrium the entropy is the log of the number ofaessible states.What should we onlude from these de�nitions in the ontext of learning?Note that for a losed system in thermodynami equilibrium marosopiallymeasurable quantities do not vary over time. This means that there is very littlethat we an learn about a system in thermodynami equilibrium. Suh systemsdo not have an internal struture and they do not have an interesting history.Consequently learnability is assoiated with non-equilibrium states of systems.Here is one possible objetive answer to the question what distinguishes a sys-tem from its environment. Separate systems are those parts of the world thatmaintain en entropy that is di�erent from their environment during a ertainperiod of time. Consequently learnable systems are assoiated with variationin entropy. This implies no maximal entropy and thus an amount of free en-ergy larger than zero. Self-organization is typially assoiated with systems thatmaintain an entropy that is di�erent from the environment for a ertain periodof time. A world that is in a state of thermal equilibrium does not ontain anymeaningful information, has no struture, no interesting development and nofree energy.3 Kolmogorov omplexityNow we turn our attention to Kolmogorov omplexity as a theory about optimalomplexity of data sets. Let x; y; z 2 N , where N denotes the natural numbersand we identify N and f0; 1g� aording to the orrespondene(0; �); (1; 0); (2; 1); (3; 00); (4; 01); : : :Here � denotes the empty word. The length jxj of x is the number of bits in thebinary string x, not to be onfused with the ardinality jSj of a �nite set S. Forexample, j010j = 3 and j�j = 0, while jf0; 1gnj = 2n and j;j = 0. The emphasis ison binary sequenes only for onveniene; observations in any alphabet an beenoded in a `theory neutral' way. Below we will use the natural numbers andthe binary strings interhangeably. In the rest of the paper we will interpret theset of models M in the following way:



De�nition 1. Given the orrespondene between natural numbers and binarystrings,M onsists of an enumeration of all possible self-delimiting programs fora preseleted arbitrary universal Turing mahine U .5 Let x be an arbitrary bitstring. The shortest program that produes x on U is x� = argminM2M(U(M) =x) and the Kolmogorov omplexity of x is C(x) = jx�j. The onditional Kol-mogorov omplexity of a string x given a string y is C(xjy), this an be inter-preted as the length of a program for x given input y. A string is de�ned to berandom if C(x) � jxj.This makesM one of the most general model lasses with a number of verydesirable properties: it is universal sine all possible programs are enumerated,beause the programs are self-delimiting we an onatenate programs at will,in order to reate omplex objets out of simple ones we an de�ne an a-prioriomplexity and probability for binary strings. There are also some less desirableproperties: C(x) annot be omputed (but it an be approximated) and C(x) isasymptoti, i.e. sine it is de�ned relative to an arbitrary Turing mahine U itmakes less sense for objets of a size that is lose to the size of the de�nition ofU . Details an be heked in [32℄.In this paper I will often use the notions of typiality and inompressibilityof elements of a set, e.g. in those ases where I state that the vast majority ofelements of a set have a ertain quality. This might at �rst sight sound a bitinaurate. To show that this notion atually has an exat de�nition I give thefollowing theorem (without proof) due to Li and Vit�anyi [32℄ pg. 109):Theorem 1. Let  be a positive integer. For eah �xed y, every �nite set A ofardinality m has at least m(1� 2�) + 1 elements x with C(xjy) � logm� .This shows that in the limit the number of elements of a set that have lowKolmogorov omplexity is a vanishing fration. In the limit a typial element ofa set is a random element. In general the vast majority of elements of a set isnot ompressible. One of the problems with Kolmogorov omplexity is that itspei�es the length of a program but tells us nothing about the time omplexityof the omputation involved.3.1 Randomness de�ieny and minimum desription lengthIt is important to note that objets that are non-random are very rare. To makethis more spei�: in the limit the density of ompressible strings x in the setf0; 1g�k for whih we have C(x) < jxj is zero [32℄. The overwhelming majorityof strings is random. In di�erent words: an element is typial for a data set ifand only if it is random in this data set. In yet di�erent words: if it has maximalentropy in the data set. This insight allows us to formulate a theory independentmeasure for the quality of models: randomness de�ieny.5 Here the notational onventions of two disiplines lash. U is the internal energy ofa system U(x) is the Universal Turing mahine with input x. Whih interpretationis meant should be lear from the ontext.



We start by giving some estimates for upper-bounds of onditional omplex-ity. Let x 2M be a string in a �nite set M thenC(xjM) � log jM j+O(1) (6)i.e. if we know the set M then we only have to speify an index of size log jM jto identify x in M . Consequently:C(x) � C(M) + log jM j+O(1) (7)The fatorO(1) is needed for additional information to reonstrut x fromM andthe index. Its importane is thus limited for larger data sets. These de�nitionsmotivate the famous Kolmogorov struture funtion:hx(�) = minS flog jSj : x 2 S;C(S) � �g (8)Here � limits the omplexity of the model lass S that we onstrut in orderto 'explain' an objet x that is identi�ed by an index in S. 6 Let D � M be asubset of a �nite model M . We speify d = jDj and m = jM j. Now we have:C(DjM;d) � log�md�+O(1) (9)Here the term �md � spei�es the size of the lass of possible seletions of d elementsout of a set of m elements. The term log �md � gives the length of an index for thisset. If we know M and d then this index allows us to reonstrut D.A ruial insight is that the inequalities 6 and 9 beome 'lose' to equalitieswhen respetively x and D are typial for M , i.e. when they are random in M .This typiality an be interpreted as a measure for the goodness of �t of themodel M . A model M for a data set D is optimal if D is random in M , i.e. therandomness de�ieny of D inM is minimal. The following de�nitions formulatethis intuition. The randomness de�ieny of D in M is de�ned by:Æ(DjM;d) = log�md�� C(DjM;d); (10)for D � M , and 1 otherwise. If the randomness de�ieny is lose to 0, thenthere are no simple speial properties that single D out from the majority ofdata samples to be drawn from M .The minimal randomness de�ieny funtion is�x(�) = �D(�) = minM fÆ(DjM) : M � D; C(M) � �g; (11)If the randomness de�ieny is minimal then the data set is typial for thetheory and, with high probability, future data sets will share the same harater-istis, i.e. minimal randomness de�ieny is also a good measure for the futureperformane of models. For a formal proof of this intuition, see [31℄.6 This � ould be seen as a fator that limits the resolution of the amera in �gure 1.



Kolmogorov omplexity thus is useful in the ontext of the soalled MinimumDesription Length Priniple (MDL). We give the traditional formulation ofMDL [24; 6℄:De�nition 2. The MinimumDesription Length priniple: The best the-ory to explain a set of data is the one whih minimizes the sum of{ the length, in bits, of the desription of the theory and{ the length, in bits, of the data when enoded with the help of the theoryIf D is a data set then the 'best' model MMDL to explain D is given by:argminM2M � logP (M)� logP (DjM) =argminM2MC(M) + C(DjM) =MMDL (12)Under this interpretation of M, the length of the optimal ode for an objetis equivalent to its Kolmogorov omplexity. This spei� formulation is alsoknown as two-part ode optimization. It is important to note that two partode optimization is a spei� appliation of MDL. The majority of work onMDL is loser in spirit to the statistial than to the Kolmogorov omplexityworld ([18℄). Rather than two-part odes, one uses general universal odes forindividual sequenes; two-part odes are only a speial ase.The formula argminM2M � logP (M)� logP (DjM) indiates that a modelthat generates an optimal data ompression (i.e. the shortest ode) is also thebest model. This is true even ifM does not ontain the original intended modelas was proved by [31℄. It also suggests that ompression algorithms an be usedto approximate an optimal solution in terms of suessive steps of inrementalompression of the data set D. Equation 12 gives the length of the optimal two-part-ode. The length of the two-part-ode of an intermediate model Mi is givenby: �(Mi; d) = log�mid �+ C(Mi) � C(D)�O(1) (13)This equation suggests that the optimal solution for a learning problem an beapproximated using an inremental ompression approah. This is indeed whata lot of learning algorithms seem to be doing: �nd a lossy ompression of thedata set by means of �nding regularities. This holds for suh diverse approahesas nearest neighbor searh, deision tree indution, indution of assoiation rulesand neural networks. There is a aveat however; Adriaans and Vit�anyi [4℄ haveshown that the randomness de�ieny not neessarily dereases with the lengthof the MDL ode, i.e. shorter ode does not always give smaller randomnessde�ieny, e.g. a better theory. This leads to the following observations:{ The optimal ompression of a data set in terms of the model- and a data-to-model ode always gives the best model approximation "irrespetive ofwhether the 'true' model is in the model lass onsidered or not" [31℄7.7 This is true only in this spei� omputational framework of referene. In a proba-bilisti ontext, both for Bayesian and MDL inferene, the assumption that the true



{ This optimal ompression annot be omputed.{ Shorter ode does not neessarily mean a better model.These observations show that the naive use of the MDL priniple is quite risky.Learning by means of inremental ompression might lead to a model that isworse then the one we started with.3.2 Kolmogorov omplexity meets thermodynamisThe mathematial relation between thermodynami entropy and Kolmogorovomplexity is rather straightforward while the philosophial impliations arequite formidable. The expression for the Gibbs entropy in thermodynamis is:S = �Xi pi ln piThe orresponding de�nition for Shannon entropy is:H � �Xi pi log2 piAording to Bais and Farmer: "...this exat quantitative de�nition of informa-tion and its appliations transend the limited origin and sope in onventionalthermodynamis and statistial mehanis."[5℄ They onsider information theoryto be more fundamental then thermodynamis.The lose onnetion between Shannon entropy and Kolmogorov omplex-ity is observed by, amongst others, Cover and Thomas: "Gratifyingly, the Kol-mogorov omplexity K is approximately equal to the Shannon entropy H if thesequene is drawn at random from a distribution that has entropy H. So thetie-in between information theory and Kolmogorov omplexity is perfet". ([11℄pg. 3).The two observations together i.e. the mathematial equivalene of Shannonentropy and Gibbs entropy and the approximate equivalene between Shannonentropy and Kolmogorov omplexity suggest a deep onnetion between physisand omplexity theory. A similar (but muh stronger view) is expressed by Liand Vit�anyi in their standard textbook. On the basis of a somewhat di�erentanalysis they onlude: "... it seems reasonable to assign to eah string x ane�etive thermodynami entropy equal to its omplexity K(x). ([32℄ pg. 551).They also disuss the relation between Shannon entropy and Gibbs entropy (pg.564).So let's take the suggestion of Li and Vit�anyi seriously. What happens whenwe observe a dynami system at a ertain point in time and store the results ina binary string? One would expet that there is a relation between the thermo-dynami qualities of the system and the mathematial qualities of the string. Inmodel is in the model lass onsidered an sometimes be ruial - this also explainswhy in Vapnik-Chervonenkis type approahes, omplexity is penalized muh moreheavily than in MDL [17℄ ).



this paragraph I present a theorem that stipulates a possible interpretation ofthis onnetion. For this purpose I will assume that it makes sense to talk aboutthe temperature of a string:Conjeture 1. We an assign a temperature to strings.For the moment the reader might interpret this as either a very deep insight or arather surrealisti artefat of the theory. Fat is that in the proof of the entraltheorem below temperature will be anelled out against other variables. This iswhat one would expet, beause in our day to day experiene the temperature ofdata sets is irrelevant. My paradigmati example will be that of a digital amera,but the theorem in priniple holds for a range of physial systems for whih westore observations in data sets. First let's assume that we an observe a sytemby means of a anonial measurement funtion h.De�nition 3. Suppose that � is a dynamial physial system that evolves overtime. A anonial measurement funtion h : � ! f01ge has the following prop-erties:{ every string produed by h has the same length e, whih is alled the equi-librium omplexity assoiated with h and{ h atually measures the entropy S of � at time t in terms of the Kolmogorovomplexity of its output: ht(S) = m(C(ht(�))), where m is a onstant.{ Spei�ally C(ht(�)) = e if � is in equilibrium, i.e. in that ase the outputof h is a random string.A anonial measurement funtion brings us from the dynami world of sys-tems to the stati world of binary data sets. Note that it is quite possible thath is a lossy funtion that gives only a partial model of �. A digital amera thatalways makes pitures with equal �le size is an approximation of a anonialmeasurement funtion. The length e of the binary string that is the output ofh is a measure of the maximal amount of information that an be produed.This amount of information will, by de�nition, only be reahed if � is in equilib-rium, hene the name equilibrium omplexity. Note that in an equilibrium statethe system has no free energy. All internal energy is onverted to work. This isassoiated with a random string as output of the measurement. This motivates:Lemma 1. ht(U) = e: the internal energy U of the system is assoiated withthe maximal Kolmogorov omplexity e of the output of h.The following theorem relates the free energy of a system with the random-ness de�ieny of the data set resulting from observations of the system:Theorem 2. Given onjeture 1,lemma 1 and a set of anonial measurementsh : � ! f0; 1ge of a dynami system � with free energy F and onstant tem-perature we have: ht(F ) � Æ(ht(�))i.e. the free energy of the system is linear in the randomness de�ieny of thedata set ontaining the measurement.



Proof: Note that h is a funtion from a system � to a set of binary strings. For� by de�nition 3 we have F � U�TS whih, under the homomorphism h gives:ht(F ) � ht(U)� ht(T )ht(S)By onjeture 1 we stipulate that ht(T ) = t. By lemma 1 we have that ht(U) =e. De�nition 3 gives: ht(S) = m(C(ht(�)))ht(F ) � e � tm(C(ht(�)))If � is in equilibrium we have zero free energy. This gives:e = tm(C(ht(�)))At the same time by de�nition 3 we have C(ht(�)) = e for equilibrium situa-tions. So we have e � tme = 0, whih gives:tm = 1Sine the temperature is onstant and m is only dependent on h the orretionsfor the homomorphism and the temperature anel eah other out. Consequently:ht(F ) � e � C(ht(�))Here e gives the maximal omplexity of the output of h and C(ht(�)) the atualomplexity at time t, this amounts to:ht(F ) � Æ(ht(�))This onludes the proof of the theorem. If we ollet a set of adequatemeasurements of a system at time t we may say that the ompressibility or ran-domness de�ieny of the resulting data set reets the free energy of the system.If the data set is ompressible then the system ontains free energy. In that aseit is not in thermodynami equilibrium and apable of performing work. Onemight all theorem 2 the fundamental learnability theorem for physial systems.It shows how learning as data ompression and thermodynamis interat. Dataompression identi�es systems that are not in thermal equilibrium: i.e. systemswith struture, systems with self organization, living systems et. In real lifeperfet anonial measurement systems do not exist, if only for loss of energybeause of the system being observed. Canonial measurement systems allowus to ignore temperature in our data sets beause they deliver a perfet imageof the entropy of the original system. Of ourse this theoretial exerise is farfrom ompleted, but I hope that it o�ers a �rst sketh of the omplex interationbetween thermodynamis and omplexity theory.4 Joule's free expansion experiment: an example oftheorem 2In Joule's free expansion experiment, whih is a standard textbook example,a high pressure ideal gas streams in to an isolated vauum hamber. This is



a adiabati non-equilibrium proess for whih most of the approximations ofthermodynamis do not hold. One would expet the gas to ool down in thisproess, beause the temperature of vauum is zero. Experiments show thatthis is not the ase: the temperature remains onstant. The results from theprevious paragraph an help us to understand this. This result is in line with thepreditions of theorem 2) in the sense that the only relevant variable utuationin this proess is the desriptive entropy.Suppose we have an ideal gas in ontinuous spae, basially a set of n identi-al perfetly elasti snooker balls in an isolated vauum ylinder with no gravity.Suppose that at t0 the partiles are all in one half of the ylinder with randompositions and veloities. This means that the system has not reahed an equilib-rium at time t0. With high probability, after a ertain period of time the partileswill be evenly distributed over the ylinder. Now the system � is given by thefollowing desription:{ The exat position and veloity of every partile given in real numbers attime zero,{ A desription of Newton's laws that regulates how the system evolves overtime.Note that the desriptive omplexity of this system � is in priniple in�nite. Arandomly seleted real from any non-empty interval ontains in�nite informa-tion with probability 1. Now onsider a homomorphism pt that takes the exatposition of eah partile at time t and sends it to an integer 1 � i � k assoiatedwith a grid of k ells de�ned by a ertain disrete oordinate system for theylinder. pt : � ! P(N) is a funtion from the system � to a set of integersthat is assoiated with the position of the balls in the ylinder at time t. Apartfrom the in�nite size of the input there is nothing triky about this funtion. Anystudent ould write the program on the basis of a suÆiently rih approximationof the real values in the input. To make the example omplete, suppose a seondfuntion q : P(N) ! f01ge that takes a set of integers S to a binary strings of length e that desribes this set. Again there is nothing triky about thisfuntion. Any student ould implement it. Finally let ht � qpt : � ! f01ge,i.e. the omposition of pt and q. Thus ht approximates a anonial measure-ment funtion that takes the system � and produes a �le with an approximatedesription of the position of the partiles at time t.First I analyze this situation from the perspetive of information theory. Anobserver that analyzes the history of � will see an inrease of the Kolmogorovomplexity of output of h to a ertain level, after whih it stabilizes. Afterthis point in time � has reahed a thermodynami equilibrium. Note that theequilibrium omplexity is dependent on the granularity of the grid used in h, i.e.we never measure the entropy of the original system diretly. It an in this asebe de�ned as: e = C(x) = log k+ logn+ log �kn�+O(1). This is the equilibriumomplexity of � with respet to h. Here the terms log k and logn are needed toode the number of ells in the grid and the number of partiles in the systemand the term log �kn� is the size of an index of the seletion of n out of k ells.



If one takes the granularity to be suÆiently high one an prove the followinglemma:Lemma 2. For all moments in time ti in whih � is in equilibrium and eahdisrete ell ontains at most one partile the omplexity of the output x of htiwill be roughly the same with C(x) = log k + logn + log �kn� + O(1), i.e. theequilibrium omplexity.Proof: observe that sine the partiles are randomly distributed over the spaethe string x desribes a random seletion of n ells out of k possibilities, i.e. arandom seletion of n integers � k . This gives the desired estimate .Lemma 2 allows us to make the following observation: if omplexity of theoutput hti is smaller than the equilibrium omplexity then � is not in a stateof equilibrium at time ti. Spei�ally, when all the partiles will be in one halfof the ylinder, the upperbound for the omplexity of the output x will be:C(x) � log(k=2) + logn+ log �(k=2)n �+O(1), whih, for large enough n, is muhsmaller than the equilibrium bound.Note that the opposite situation is possible: there are low entropy states thatare not 'sensed' by ht e.g. the situation in whih the partiles are randomlydistributed over the ells, but eah partile is exatly in the middle of a ell.These states, however, are extremely improbable. So we have gained the followinginsight: if our data set is ompressible below the standard equilibrium desriptionomplexity, then the system is not in equilibrium and will have free energy. Theonverse is not true. Theorem 2 gives the exat onnetion.Let us analyze this example again in terms of lassial thermodynamis.This is not unproblemati beause thermodynamial derivations only work understrit equilibrium onditions that are not always met. Note, that also in thederivation of Gibbs entropy a partition funtion Z is introdued to renormalizethe lasses of veloities in to a sound probability distribution. Gibbs entropy isonly de�ned for anonial ensembles. The number of partiles and the volumeare onstant so two onditions for anonial ensembles are met. Others vary overtime in the example. In priniple there are three di�erent phases:{ At time t0 all the partiles are in one half of the ylinder with random velo-ities and spatial distribution. For this part of the ylinder we ould alulatethe standard marosopi variables, temperature, pressure and entropy byonsidering it (somewhat erroneously) as a miroanonial ensemble with�xed volume, number of partiles and energy. The other half of the ylin-der is empty and thus has a vauum: the pressure, the temperature and theentropy are all zero. One an use this separation of temperature to run aheat engine by allowing the heat to ow from the hot side to the old side.The Gibbs entropy for the total ylinder is not de�ned beause it is not inequilibrium.{ In the seond phase the atoms distribute themselves over the total spae,but no equilibrium is reahed yet. In this phase the standard marosopivariables like temperature and pressure are not de�ned. The same holds forthe Gibbs entropy.



{ In the last phase a state of equilibrium is reahed. The Gibbs entropy as wellas temperature and pressure are well de�ned.There is no exhange of energy with the environment so we have rapid adiabatiexpansion. We annot use the standard de�nition to estimate the work doneby the system, dU = TdS � PdV , sine P , V and T are not well de�ned forthe whole system during all the three phases. Still, internally we have heat owand this must be assoiated with a potential amount of work done by the gas.Sine the veloities of the partiles do not hange during the expansion, thetemperature will remain the same. The hange in free energy an be explainedompletely in terms of a hange of entropy. Sine the gas does not do any workduring the expansion the temperature remains the same. This would be di�erentif the gas has to push away a piston during the expansion, then the temperaturewould also drop. The original free energy of the gas is ompletely transformedin to entropy: F = TdS (14)The homomorphism h allows us to estimate the relative hange of entropy.This is assoiated with the relative di�erene between the equilibrium omplexityof the gas distributed over the whole ylinder minus the initial omplexity of thegas distributed over half of the ylinder:h(dS) = �1e (log�kn�� log�k=2n �+O(1)) � (15)�1e (Z kk�n logx dx� Z k=2k=2�n logx dx+O(1))The integrals in the last part of this equation niely show that the notionof 'volume hange' is also transferred to the information theoretial part of thetheory. This expression has to be orreted for the length of the output with afator �1e where e is the equilibrium omplexity. This is assoiated with thegranularity of the homomorphism h. Also h must be �ne grained to suh a degreethat it reets the hange in entropy of the system. In order for theorem 2) todo its work it is not neessary to use a grid as �ne as in this example (i.e. onepartile per ell). This was only introdued to make the mathematis easier.Note that, sine q in h is a anonial measurement funtion we an estimate therandomness de�ieny of the output of h at t0:Æ(ht0(�)) = log�kn�� log�k=2n �+O(1) (16)Sine the temperature does not hange we an onsider its image to be on-stant t = h(T ). Combining this with equations 14 and 15 we get:ht0(F ) = h(T )h(dS) = t=e(log�kn�� log�k=2n �+O(1)) (17)



Insertion of equation 16 gives:ht0(F ) = t=e(Æ(ht0(�)) (18)This is the desired result: for anonial measurements of adiabati proesses,with onstant temperature, the free energy of the system is proportional to therandomness de�ieny of the measurements with orretions for temperature andthe granularity of the measurement. The fators t=e remain in the �nal resultbeause in this ase our homomorphism h does not obey the strit onditions oftheorem 2. Information theory an help us to quantify thermodynami variablesin situations in whih some of the units are ill de�ned.5 FatiityThis analysis shows that entropy and Kolmogorov omplexity not neessarilymeasure the interestingness of a system of a data set. All systems in the uni-verse will eventually reah a state of maximal entropy. A system in maximalentropy has played its part and has no interesting struture. Likewise, althougha random string x ontains in a way the maximum amount of information pos-sible for a string of length jxj, it ontains without any ontext no meaningfulinformation. We an not expet to learn very muh about a system that is ina state of thermodynami equilibrium. On the other hand a string with lowomplexity does not ontain very muh information and thus by de�nition itdoes not ontain muh meaningful information. Interestingness or meaningful-ness of a data set seems to be lying in a tension between haos and struture.As a �rst approximation of this notion I will de�ne the idea of the fatiity ofa data set. The fatiity of a binary string will be maximal if C(x) = 1=2jxj.The maximum amount of meaningful information an be measured in terms ofthe what I all the normalized fatiity of a string. It is the produt of thenormalized entropy C(x)=Cmax(x) and the normalized randomness de�ieny(Cmax(x) � C(x))=Cmax(x). For strings this is:'(x) = 4C(x)jxj � jxj � C(x)jxj (19)The fator 4 serves to seure a maximum fatiity of 1. Fatiity an be seenas a normalized information density measure. For thermodynami systems thisequation is transformed in to:'(�) = 4 SSmax � Smax � SSmax (20)This is the rationale behind the experiment represented in �gure 1. Here I havetaken pitures of the proess of mixing blak and white paint. I use the fatiitysore to selet the most interesting piture.One might objet that my de�nition of fatity is arbitrary. Why selet themaximum on the balane between order and haos? Why not 1/3 or 1/8? The



motivation lies in theorem 2 in the previous paragraph. If the data set is produedby a anonial measurment funtion then we have maximal fatiity in the exatspot were the produt of the free energy stored in the system and the amountof information stored in the system is maximal. Fatiity faithfully measures theamount of useful information in a system: if fatiity is high then there is a lot ofinformation in the system and the system has a lot of free energy to do somethingwith this information. Of ourse there is a ertain arbitrariness and one ouldhoose another optimum. This is a form of arbitrariness that is very ommon insiene. We an measure temperature in degrees Celsius, Fahrenheit or Kelvin.This is OK as long as there are lear onversions and all units of measurementrefer to the same underlying onept, in this ase temperature. Here I presentfatiity as an abstrat formal onept with a well founded stipulative de�nition.

Fig. 2. A tree representation based on the normalized ompression distane between12 Piano piees.The fat that state of the art data ompression routines an be used to makepreditions about data sets that seem to have ognitive relevane was reentlydisovered by Vit�anyi and Cilibrasi [9℄. Suppose that x and y are data sets andthat we have a onatenation operation on these sets that allows us to form xy.Let C be a general ompression routine suh that C(x) is the length in bits ofdata set x when ompressed by C. We an now de�ne the related NormalizedCompression Distane (NCD):NCD(x; y) = C(xy) �minfC(x); C(y)gmaxfC(x); C(y)g (21)Figure 2 shows that NCD seems to be able to identify style onnetionsbetween di�erent piano piees. NCD seems to work well for data sets that have



a natural linear representation suh as musi and language. For images it seemsto work less well due to the fat that we do not have good general purposeompression algorithms for higher dimensional data sets.

Fig. 3. Fatiity sores for three well known works of art. Piasso's Guernia soresa maximal 1. It ontains optimal meaningful information. As was to be expeted,the blak square of Malewih has a low sore on the interestingness sale. It ontainslittle information. But also Polloks omposition No. 5 has a lower sore. In a way, itontains 'too muh' information to be interesting. Note that people always speak about'the drippings' of Pollok. Apparently it is diÆult to keep these high entropy imagesapart. The fatiity sores were alulated in the same way as in �gure 1. These worksof art typially represent the period of rises in painting in the 20th entury in whihpainters were trying to rede�ne the oneptual spae of their art.5.1 Fati proesses and fati data setsThe fatiity is optimal if the balane between order and haos is optimal. Fa-tiity is partly motivated by insights from thermodynamis, but an also be



introdued via other onstrutions. Fatiity in a dynami setting an be seen asa rule breaking onept. Funtions that follow and break rules with some regu-larity reate data sets with high fatiity. Suppose we want to onstrut a binarystring of k bits with maximum fatiity, i.e. C(x) = k=2. For any k of suÆientsize, strings with near optimal fatiity exist in abundany: just onatenate alow omplexity string of length of a. k=2+ logk=2+O(1) to a random string oflength a. k=2� log k=2�O(1), where the term log k=2 serves to ode the lengthand O(1) serves to onatenate the �rst part to the seond part. This gives atleast 2k=2�log k=2�O(1) strings with basi near optimal fatiity and there aremany more. We are interested in proesses that reate fatiity. The followingde�nition is useful:De�nition 4. An inremental information reation proess is alled fati ifit maintains onstant fatiity of the total generated data set.We all data sets with high fatiity also fati. Note that in order for a proessto be fati it must have aess to an unlimited soure of new information duringits exeution. In general, fati proesses seem to be the result of two onitingfuntions: one generating funtion that is an unlimited soure of new informationand a onstraining funtion that regulates the prodution of information. Notethat although fati data sets exist in abundane there is no reursive routinethat an onstrut them sine the Kolmogorov omplexity needed to judge thefaitiity sore an not be omputed. Another way to say the same thing is thatreursive routines an not reate new information fast enough to sustain fatiity:reursion is not fati. Data sets that are fati with high probability an easilybe approximated by omputational routines that use a random generator asgenerating funtion and a standard data ompression funtion as onstrainingfuntion. There is an abundane of examples of fati proesses:{ Evolutionary proesses are in general fati. Here mutation is the informationgenerating funtion and the environment that regulates survival serves as aonstraining funtion.{ A ooperative teaher (See [3℄). If we have a learning agent with limitedomputational resoures (the onstraining funtion) a ooperative teaher(the generation funtion) would follow a strategy of seleting simple exam-ples that allow the 'pupil' to ompress the examples in to rules with relativeease. When the pupil has digested the simple examples the teaher an shiftto more omplex ones. Thus the omplexity of the examples inreases mono-tonially. The teaher will selet his examples in a narrow band betweenwhat the pupil already knows (order) and what is too omplex to proess(subjetive haos).{ Curiosity driven 'reative' agents as proposed by Shmidhuber (See [29℄).Under assumption that the general apaity to learn gives an evolutionarybene�t, we expet learning agents that are the produt of evolution to havesome mehanism that drives them to selet new examples that are opti-mal given their urrent theories about the struture of their environment.Suh an explanation of the evolutionary bene�ts of uriosity seems plausi-ble. By the same token suh a uriosity driven agent should be inlined to



ignore any low-omplexity examples that are already proessed as boringand searh examples that 'satisfy' its uriosity. These are the examples thatthe agent will �nd 'interesting' in this stage of the learning proess. Herethe searh proess of the agent of the generating funtion and the subjetiveompression routine of the agent is the onstraining funtion. One mighteven interpret uriosity driven sienti� heuristis as an advaned variant ofsuh an evolutionary survival strategy for the human rae.Let us return to our original ambition. Given a system � we ollet a setof measurements D and represent them in a string x. We are interested in anexplanation of the struture of � and a predition of its behavior. What dothese ambitions mean in the ontext of the framework that I have desribed? Wehave seen that we should be autious about the use of inremental ompressionalgorithms. Yet in the real world data ompression seems to be a reasonableindutive strategy. This amounts to the following intuitive:Claim. The distributions we �nd in the world are generally benign in the sensethat time and memory bounded tests with reasonable limits for Kolmogorovomplexity are suÆient for an adequate omplexity estimate.What the memory and proessing time limits would be is a problem for an otherpaper, but a reasonable intuition would be that the limits lie well within theproessing apaity of the human brain. Another way of formulating the samepriniple is: if a system looks like it is in thermodynami equilibrium, with highprobability it is. This implies that data sets that look random but in fat arehighly strutured, like the deimal expansion of the number � are highly rarein nature. Why (and if) these data sets do not our is not ompletely lear,but a natural assumption would be that natural systems that are apable ofalulating suh rih data sets are by nature instable and therefore do not existlong enough in time.6 Algorithmi esthetisReently Shmidhuber de�ned a notion of 'interestingness' in a paper with therather ambitious title "Simple Algorithmi Priniples of Disovery, Subjetivebeauty, Seletive Attention, Curiosity & Creativity" [29℄. Sine there is a relationwith the notion of fatiity it is useful to present a ritial disussion of theseideas. Although I am ritial of Shidhuber's theories, at least we seem to agreeon one point: algorithmi information theory is a useful formalism to evaluateestheti theories. Indeed, as we saw in the previous paragraphs, uriosity drivenagents tend to produe fati data sets. But it seems not right to equate thenotion of 'interestingness' that an be de�ned for these agents with beauty.As an algorithmi esthetis Shmidhubers oneption is not satisfatory. In thefollowing I will argue that the notion of subjetive ompressibility in art is muhmore omplex than Shmidhuber assumes. In partiular great works of art seemto be a rih soure of meaning beause of the fat that they transend our



rationality (i.e. they have high fatiity in themselves and an not be ompressed)and not beause they have low omplexity. Beauty is not an evolutionary onept.Artists do not try to onstrut simple didati objets, they try to onstrutobjets that are as rih in meaning as possible, i.e. they try to optimize fatiity.

Fig. 4. An illustration of the omplex relation between data ompression and idealiza-tion in art. The eigenfae shows that a proess of data ompression in to a general idealform is an element of a ertain artisti tradition. At the same time extreme realism(very little ompression) and shematization (extreme ompression) exist. Note thatthe portrait in the upper left is from Fayoum. It shows that individual portraits alreadyoured in antiquity, illustrating the a-historial harater of this form of realism. Theidea that beauty has a relation with low-omplexity and that the history of art showsan evolution to objets of inreasing omplexity is simply denied by the fats. Theautomatially onstruted eigen fae is due to Luis Ja~nez Esalada and Miguel AngelCastellanos of the University of Madrid.At �rst sight the idea of low omplexity art seems to �t niely with somepredominant themes of western philosophy dating bak to anient Greek thought:1) the Platoni identi�ation of beauty and truth and 2) the identi�ation oftruth with simpliity. In various soures from antiquity we �nd the notion thattruth and beauty an be reahed through a proess of 'idealization' removing allthe errors and faults from a olletion of similar objets.8 The fat that thereare philosophers that defend those ideas does not imply that they desribe whatartists atually do. Figure 4 shows that the reality is muh more omplex. Artists8 See e.g. Xenophon, Memorabilia III. This atually shows that the notion of dataompression as a proess of idealization that approximates some form of truth ismuh older than Oam. MDL as a sienti� methodology has its roots in Greekthought.



ertainly use ompression, but not in suh a way that beauty an in general beidenti�ed with low-omplexity. The following variants seem to our:{ Realism: the representation is isomorphi to the data.{ Idealization: ideal shemas optimally ompress the desription of a set ofexamples with errors.{ Shematization: optimal ompression under bounded omplexity.{ Charaterization: optimal bounded ompression of an individual exampleonditional to the optimal general theory.What is more, all these variants our side by side throughout history. Thereis no development from simple to more omplex art as would be predited byShmidhuber's theory. Espeially Plato's identi�ation of truth and beauty that�ts so niely with the onept of a uriosity driven notion of evolutionary beautyshould be regarded with suspiion. In the end artists were banned from Plato'sideal state. Artists do not follow rules, they break them.

Fig. 5. Left, a piture of a regular shemati feminine fae due to Shmidhuber [27℄.In the middle, a detail of a opy of the Mona Lisa by Leonardo's untalented proteg�eSalai. On the right a sheme for a hilds head based on an arrangement of four irlesin a square due to Fioletti (1608). The last image shows that onstrution of faesaording to simple geometrial shemes was an element of artistial training in theRenaissane. It is lear from the plain look of Salai's painting, whih onveys nothingof the fasination of the original, that great works of art are diÆult to opy, i.e. theyhave a meaning that an not be aptured by simple geometrial shemas. This supportsthe view that great works of art optimize fatiity and an not be ompressed in tolow-omplexity data sets.The world of art and siene have di�erent rhetorial models. An artist om-muniates diretly with his audiene through his produts. If the essential qualityof a work of art ould be desribed adequately in language then the work of artwould be nothing but an illustration of the text, and thus stop to be an inde-pendent work of art. From this perspetive any attempt to formulate a sienti�theory explaining what beauty is or presribing what human beings should or



would �nd beautiful is doomed to fail. Books and theories by authors like Ra-mahandran [26℄ and Shmidhuber [29℄ present us with hypothetial models ofthe human mind and then try to de�ne beauty or reativity in terms of thesemodels. Suh an exerise may give us deep insights, it does not hange the fatthat beauty transends the tools of siene.7 Conlusions and further workIn this paper I studied the notion of meaningful information. I showed that thisnotion is intriately onneted with the idea of learning by ompression. I intro-dued the onept of fatiity as a �rst approximation of meaningful information.I studied data ompression in the ontext of thermodynamis and I showed that,under adequate measurement onditions, the randomness de�ieny of a data setis assoiated with the free energy in the data set.Note that systems in thermodynamial equilibrium have no signi�ant de-velopment in time. Reduing the desription of these systems to random twopart-odes ompresses the desription of the system to those elements that aretime invariant. That is why suh desriptions an be used to predit the futureof the system.There are a number of ways in whih this researh ould be expanded. Firstlythere is the issue of developing good omplexity estimates for spei� problemlasses, so that MDL approahes an be used. I have given initial reports for DFAindution but muh improvement is possible [1℄. Another diretion of researhis a deeper analysis of the distributions that I suppose are essential for ourapabilities to analyze the world around us. Another interesting exerise ouldbe a further embedding of these insights in the history of philosophy.Interestingly the laims of the role of fatiity in art I have defended hereseem to be open for empirial testing (and thus to plain Popperian falsi�ation).This is due to the fat that Cilibrasi's Normal Compression Distane seemsto measure ognitive relevant aspets of musi represented as midi �les. Theneed felt by omposers to streh the limits of onsonany and ounterpoint at aertain point in history, should be measurable as an impossibility to ome up withinteresting original melodies given enough Midi representations of melodies up tothat moment. Seondly, given the urrent status of fMRI tehnology it is possibleto present melodies with various variantions in omplexity and fatiity and tostudy invariants in representation in the brain. Normal ompression distaneseems not to be able to measure ognitive relevant aspet of images but at thismoment omparable fMRI and PET-san studies are done measuring the brain'sreation to images with various Weibull and non-Weibull distributions that havea relation with fatiity [16℄. Even if the reation of real art will remain a miralefor ever, we are bound to get a muh deeper insight in the 'innate' probabilitydistributions that our brain uses to analyse and predit the world around us.
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